insights (2)

At the STEM Innovation for Inclusion in Early Education (STEMI2E2) center, one of the first tasks we did was to take a look at what kind of research evidence exists in STEM learning and young children with disabilities. We conducted a scoping review and found that a majority of the references were related to children of preschool age (3-4 years old). Very few discussed infants/toddlers and children with disabilities.

Christine Harradine's headshot

By Christine Harradine, PhD

PD Specialist at the STEM Innovation for Inclusion in Early Education Center (STEMIE)

One of the first tasks we did when we started our work a year ago was to take a look at what kind of research evidence exists in STEM learning and young children with disabilities. We conducted an extensive review of the research – called a scoping review – to see what we could find.  We searched 102 different sources such as databases, direct searches of journals, reports, conference proceedings, master’s theses, presentation transcripts, films, and dissertations) with 20 search terms.  This yielded 1,407 unique references, which two-person teams independently reviewed for exclusion based on age and topic. We ended up with 486 unique references, which we categorized in several ways.

The scoping review found that the vast majority (92.6%) of these 486 references were related to children of preschool age (3-4 years old). Very few discussed infants (1.9%) or toddlers (1%). 

We also wanted to know if these 486 references covered young children with disabilities. We allowed the search to cover STEM learning in all early care arrangements (e.g., home, child care, preschool, Head Start, etc.) for all children with and without disabilities, ages birth to five years. Only 6% (n=29) of the references we found referred to children with disabilities. 
decorative image

Read more…

Children can develop the foundations for STEM (science, technology, engineering, math) learning right from infancy. Yet children with developmental delays and disabilities are especially denied opportunities to learn STEM.  By the time children get to high school, the disparity in STEM learning is very obvious (see chart below).  Data from the Department of Education show a large disparity in enrollment in STEM courses between high school students with (IDEA) and without a disability.

Chih-ing lim's headshotby
Chih-Ing Lim,  PhD.
Co-director of the STEM Innovation for Inclusion in Early Education Center (STEMIE)

For us as a field, this presents opportunity for improvement in early childhood STEM learning. We know preschoolers’ free play involves STEM skills as they explore patterns and shapes; engineer with various materials; and explore scientific concepts. Even infants and toddlers’ exploration of the world around them is STEM-related — as they experiment with concepts of cause and effect, shapes, and experience with their senses. We also know families are children's first and longest lasting teachers. Families are more likely to implement and use intervention practices when they understand the benefits. Yet, how do we move the dial more toward including young children with disabilities in STEM learning? One way is to center instruction around learning trajectories or developmental progression. We’ll talk about the process more in future posts. Doing so focuses practitioners’ attention on children’s thinking and learning rather than their memberships in diverse groups (e.g., racially, ability). Using learning trajectories also helps avoid perceptions that can negatively affect early childhood STEM teaching and learning.


US department of education data that illustrates the percent of high school students enrolled in STEM courses

Read more…

Welcome

Hello and welcome to the STEM4EC Community.  We invite your participation.

Read More >

Dr. Brenda Gonzalez is now a member of stem4ec
Apr 18
Renee Harris is now a member of stem4ec
Apr 7
STEMIE Center liked STEMIE Center's blog post My STEM Adventure: Inclusive Educational Gaming for Everyone
Apr 4
STEMIE Center posted a blog post
Fact: Assistive technology ranges from low-tech aids, such as grasping supports, to specialized high-tech supports, such as an augmentative communication system, based on the individualized needs of the child.


Victoria Waters, M.Ed. is an…
Apr 3
Cattleeya Chakkuchan is now a member of stem4ec
Apr 2
Lindsey Smith is now a member of stem4ec
Mar 26
Barbie Jones is now a member of stem4ec
Mar 21
Stacey Camp is now a member of stem4ec
Mar 7
Stephanie De Bear is now a member of stem4ec
Feb 27
Bogumila Ryndak-Mazur is now a member of stem4ec
Feb 15
Ahmad Basendouh commented on STEMIE Center's blog post Project Approach and STEM Learning for ALL
"This is a great read. Recently, I wanted to use the project approach to teach computer programming. So, I am reaching out to get some advice on that. I was struggling on how can we adapt the project approach to effectively teach programming concepts…"
Feb 13
Ahmad Basendouh is now a member of stem4ec
Feb 12
DAMLA ALTIN is now a member of stem4ec
Jan 25
Susan M. Fitzmaurice and Alvin Rochefort joined stem4ec
Jan 23
Karren McIntire is now a member of stem4ec
Jan 19
catherine martin is now a member of stem4ec
Jan 17
More…

Community Guidelines and Privacy Statement